Periodic Table Element Comparison: Compare Elements - Lithium vs Fluorine
Compare Lithium and Fluorine on the basis of their properties, attributes and periodic table facts. Compare elements on more than 90 properties. All the elements of similar categories show a lot of similarities and differences in their chemical, atomic, physical properties and uses. These similarities and dissimilarities should be known while we study periodic table elements. You can study the detailed comparison between Lithium vs Fluorine with most reliable information about their properties, attributes, facts, uses etc. You can compare Li vs F on more than 90 properties like electronegativity , oxidation state, atomic shells, orbital structure, Electronaffinity, physical states, electrical conductivity and many more. Lithium and Fluorine comparison table on more than 90 properties.
Lithium and Fluorine Comparison
Facts
Name | Lithium | Fluorine |
---|---|---|
Atomic Number | 3 | 9 |
Atomic Symbol | Li | F |
Atomic Weight | 6.941 | 18.9984032 |
Phase at STP | Solid | Gas |
Color | Silver | Colorless |
Metallic Classification | Alkali Metal | Halogens |
Group in Periodic Table | group 1 | group 17 |
Group Name | lithium family | fluorine family |
Period in Periodic Table | period 2 | period 2 |
Block in Periodic Table | s -block | p -block |
Electronic Configuration | [He] 2s1 | [He] 2s2 2p5 |
Electronic Shell Structure (Electrons per shell) | 2, 1 | 2, 7 |
Melting Point | 453.69 K | 53.5 K |
Boiling Point | 1615 K | 85.03 K |
CAS Number | CAS7439-93-2 | CAS7782-41-4 |
Neighborhood Elements | Neighborhood Elements of Lithium | Neighborhood Elements of Fluorine |
History
Parameter | Lithium | Fluorine |
---|---|---|
History | The element Lithium was discovered by A. Arfwedson in year 1817 in Sweden. Lithium derived its name the Greek word lithos, meaning 'stone'. | The element Fluorine was discovered by A.-M. Ampère in year 1810 in France. Fluorine derived its name from the Latin fluere, meaning 'to flow'. |
Discovery | A. Arfwedson (1817) | A.-M. Ampère (1810) |
Isolated | W. T. Brande (1821) | H. Moissan (1886) |
Presence: Abundance in Nature and Around Us
Parts per billion (ppb) by weight / by atoms (1ppb =10^-7 %)
Property | Lithium | Fluorine |
---|---|---|
Abundance in Universe | 6 / 1 | 400 / 30 |
Abundance in Sun | 0.06 / 0.01 | 500 / 30 |
Abundance in Meteorites | 1700 / 4600 | 89000 / 96000 |
Abundance in Earth's Crust | 17000 / 50000 | 540000 / 590000 |
Abundance in Oceans | 180 / 160 | 1300 / 420 |
Abundance in Humans | 30 / 27 | 37000 / 12000 |
Crystal Structure and Atomic Structure
Property | Lithium | Fluorine |
---|---|---|
Atomic Volume | 13.02 cm3/mol | 11.202 cm3/mol |
Atomic Radius | 167 pm | 42 pm |
Covalent Radius | 134 pm | 71 pm |
Van der Waals Radius | 182 pm | 147 pm |
Atomic Spectrum - Spectral Lines | ||
Emission Spectrum | ||
Absorption Spectrum | ||
Lattice Constant | 351, 351, 351 pm | 550, 328, 728 pm |
Lattice Angle | π/2, π/2, π/2 | π/2, π/2, π/2 |
Space Group Name | Im_ 3m | C12/c1 |
Space Group Number | 229 | 15 |
Crystal Structure | Body Centered Cubic | Base Centered Monoclinic |
Atomic and Orbital Properties
Property | Lithium | Fluorine |
---|---|---|
Atomic Number | 3 | 9 |
Number of Electrons (with no charge) | 3 | 9 |
Number of Protons | 3 | 9 |
Mass Number | 6.941 | 18.9984032 |
Number of Neutrons | 4 | 10 |
Shell structure (Electrons per energy level) | 2, 1 | 2, 7 |
Electron Configuration | [He] 2s1 | [He] 2s2 2p5 |
Valence Electrons | 2s1 | 2s2 2p5 |
Oxidation State | 1 | -1 |
Atomic Term Symbol (Quantum Numbers) | 2S1/2 | 2P3/2 |
Shell structure |
Isotopes and Nuclear Properties
Lithium has 2 stable naturally occuring isotopes while Fluorine has 1 stable naturally occuring isotopes.
Parameter | Lithium | Fluorine |
---|---|---|
Known Isotopes | 3Li, 4Li, 5Li, 6Li, 7Li, 8Li, 9Li, 10Li, 11Li, 12Li | 14F, 15F, 16F, 17F, 18F, 19F, 20F, 21F, 22F, 23F, 24F, 25F, 26F, 27F, 28F, 29F, 30F, 31F |
Stable Isotopes | Naturally occurring stable isotopes: 6Li, 7Li | Naturally occurring stable isotopes: 19F |
Neutron Cross Section | 0.045 | 0.0096 |
Neutron Mass Absorption | - | 0.00002 |
Chemical Properties: Ionization Energies and electron affinity
Property | Lithium | Fluorine |
---|---|---|
Valence or Valency | 1 | 1 |
Electronegativity | 0.98 Pauling Scale | 3.98 Pauling Scale |
Electron Affinity | 59.6 kJ/mol | 328 kJ/mol |
Ionization Energies | 1st: 520.2 kJ/mol 2nd: 7298.1 kJ/mol 3rd: 11815 kJ/mol | 1st: 1681 kJ/mol 2nd: 3374.2 kJ/mol 3rd: 6050.4 kJ/mol 4th: 8407.7 kJ/mol 5th: 11022.7 kJ/mol 6th: 15164.1 kJ/mol 7th: 17868 kJ/mol 8th: 92038.1 kJ/mol 9th: 106434.3 kJ/mol |
Physical Properties
Property | Lithium | Fluorine |
---|---|---|
Density | 0.535 g/cm3 | 0.001696 g/cm3 |
Molar Volume | 13.02 cm3/mol | 11.202 cm3/mol |
Elastic Properties | ||
Young Modulus | 4.9 | - |
Shear Modulus | 4.2 GPa | - |
Bulk Modulus | 11 GPa | - |
Poisson Ratio | - | - |
Hardness - Tests to Measure of Hardness of Element | ||
Mohs Hardness | 0.6 MPa | - |
Vickers Hardness | - | - |
Brinell Hardness | - | - |
Electrical Properties | ||
Electrical Conductivity | 11000000 S/m | - |
Resistivity | 9.4e-8 m Ω | - |
Superconducting Point | - | - |
Heat and Conduction Properties | ||
Thermal Conductivity | 85 W/(m K) | 0.0277 W/(m K) |
Thermal Expansion | 0.000046 /K | - |
Magnetic Properties | ||
Magnetic Type | Paramagnetic | - |
Curie Point | - | - |
Mass Magnetic Susceptibility | 2.56e-8 m3/kg | - |
Molar Magnetic Susceptibility | 1.78e-10 m3/mol | - |
Volume Magnetic Susceptibility | 0.00000137 | - |
Optical Properties | ||
Refractive Index | - | 1.000195 |
Acoustic Properties | ||
Speed of Sound | 6000 m/s | - |
Thermal Properties - Enthalpies and thermodynamics
Property | Lithium | Fluorine |
---|---|---|
Melting Point | 453.69 K | 53.5 K |
Boiling Point | 1615 K | 85.03 K |
Critical Temperature | 3223 K | 144.13 K |
Superconducting Point | - | - |
Enthalpies | ||
Heat of Fusion | 3 kJ/mol | 0.26 kJ/mol |
Heat of Vaporization | 147 kJ/mol | 3.27 kJ/mol |
Heat of Combustion | -298 J/(kg K) | - |
Regulatory and Health - Health and Safety Parameters and Guidelines
Parameter | Lithium | Fluorine |
---|---|---|
CAS Number | CAS7439-93-2 | CAS7782-41-4 |
RTECS Number | RTECSOJ5540000 | RTECSLM6475000 |
DOT Hazard Class | 4.3 | 2.3 |
DOT Numbers | 1415 | 9192 |
EU Number | - | EU231-954-8 |
NFPA Fire Rating | 2 | 0 |
NFPA Health Rating | 3 | 4 |
NFPA Reactivity Rating | 2 | 4 |
NFPA Hazards | Water Reactive | Oxidizing Agent, Water Reactive |
AutoIgnition Point | 179 °C | - |
Flashpoint | - | - |
Compare With Other Elements
Compare Lithium and Fluorine with other elements of the periodic table.
Compare Lithium with all Group 1 elementsCompare Lithium with HydrogenCompare Lithium with SodiumCompare Lithium with PotassiumCompare Lithium with RubidiumCompare Lithium with CesiumCompare Lithium with Francium Compare Lithium with all Period 2 elementsCompare Lithium with BerylliumCompare Lithium with BoronCompare Lithium with CarbonCompare Lithium with NitrogenCompare Lithium with OxygenCompare Lithium with FluorineCompare Lithium with Neon Compare Lithium with all Alkali Metal elements | Compare Fluorine with all Group 17 elementsFluorine vs Chlorine ComparisonFluorine vs Bromine ComparisonFluorine vs Iodine ComparisonFluorine vs Astatine ComparisonFluorine vs Tennessine Comparison Compare Fluorine with all Period 2 elementsFluorine vs Lithium ComparisonFluorine vs Beryllium ComparisonFluorine vs Boron ComparisonFluorine vs Carbon ComparisonFluorine vs Nitrogen ComparisonFluorine vs Oxygen ComparisonFluorine vs Neon Comparison Compare Fluorine with all Halogens elements |